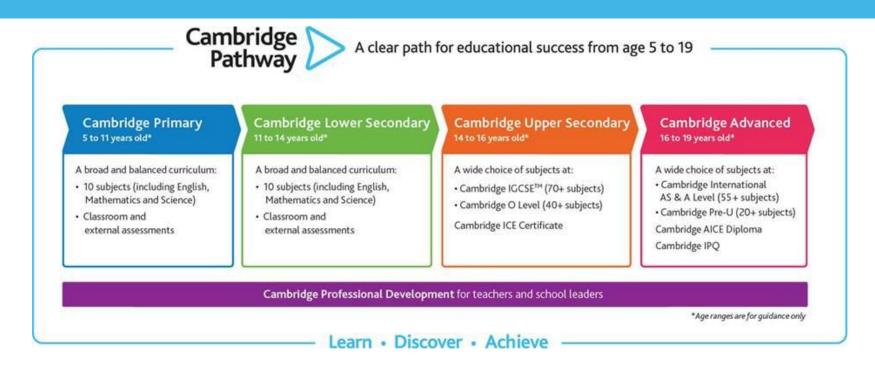


Cambridge Primary and Lower Secondary programme: A short overview

Dr Fiona Jackson Head of Primary and Lower Secondary

Rachel Talbot Product Manager, Assessment

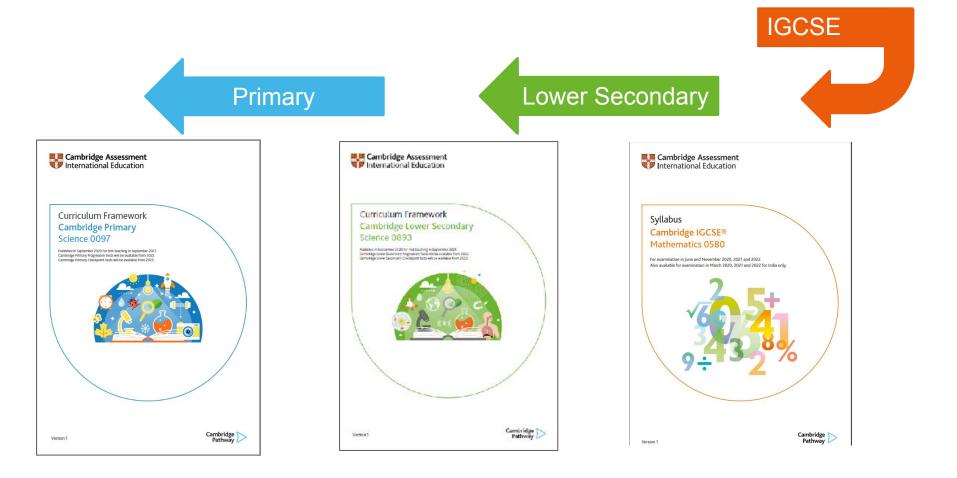
10 March 2022


Sarah Nelson Curriculum Programmes Manager

What will I cover today?

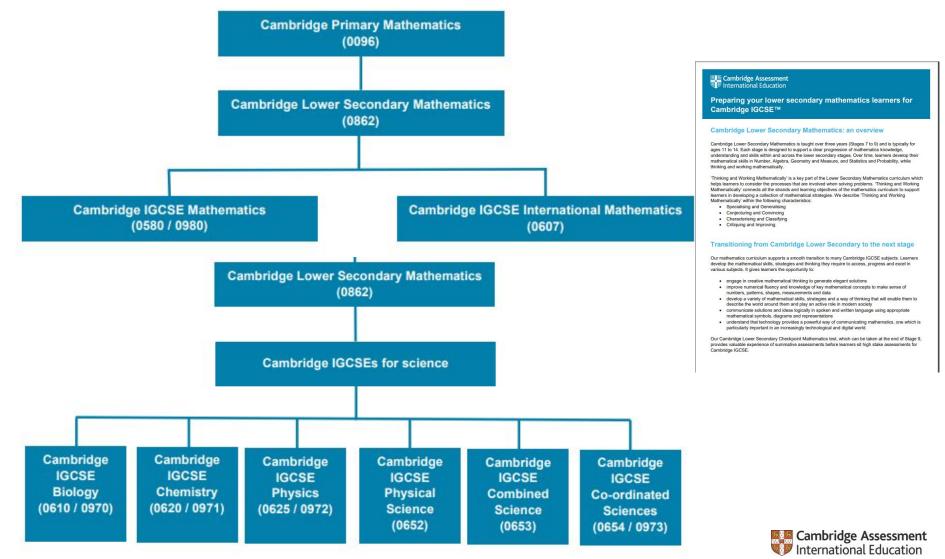
- 4 An overview of the Cambridge Primary and Lower Secondary programme
- 4 How our programme supports 21st century teaching and learning
- 4 Questions

The Cambridge Pathway 2021


Primary and Lower Secondary develops knowledge and skills in 10 subjects

- English as a first language
- English as a second language
- Mathematics
- Science
- Global Perspectives

- Computing
- Digital Literacy
- Art & Design
- Music
- Physical Education


Progression of learning

Transition from Lower Secondary to IGCSE

Lower Secondary Mathematics prepares students for IGCSE Mathematics and Science

Support Site – Transition to IGCSE

fome		
bout Cambridge Lower secondary	Guide to Cambridge Lower Secondary Curriculum Classroom su	pport Cambridge Lower Secondary Progression Tests
fessages	Cambridge Lower Secondary Checkpoint Integrating Cambridge In you	ur context
t & Design	Cambridge Lower Secondary Checkpoint integrating Cambridge in yo	
mbridge Global rspectives	Preparing for Upper Secondary	Guide to Camb
mputing	Cambridge Lower Secondary forms part of the Cambridge Pathway and our sul transition onwards to relevant IGCSE and O Level syllabuses in Cambridge Upp	
rital Literacy	The following documents demonstrate possible subject-specific pathways thro	
glish		
glish as a Second	Transition Guidance	^
Transition to	IGCSE	(PDF) 68KB 景
thematics	Eower secondary Art & Design transition to IGCSE	
JSIC	Lower Secondary Art & Design transition to O Level	(PDF) 72KB 👲
ysical Education		
ience	Lower Secondary Computing transition to IGCSE	(PDF) 169KB 💆
ommunity	Lower Secondary Computing transition to O Level	(PDF) 122KB 💆
aining		
	Lower Secondary Digital Literacy transition to IGCSE	(PDF) 141KB 💆
n progression tests		
arner management	Lower Secondary Digital Literacy transition to O Level	(PDF) 55.4KB 🛓
est management	IN 1 I I I I I I I I I I I I I I I I I I	inort Java

https://lowersecondary.cambridgeinternational.org/about-cambridge-lower-secondary

Assessment Options

Subject	Checkpoint	Progression Tests	Assessment Guidance
English English as a Second Language Mathematics Science	YES	YES	()
Global Perspectives	YES	(4)	
Art & Design Computing Digital Literacy Music Physical Education	-2	-	YES

Checkpoint:Stages 6 and 9 onlyProgression Tests:Stages 3, 4, 5, 6, 7, 8 and 9

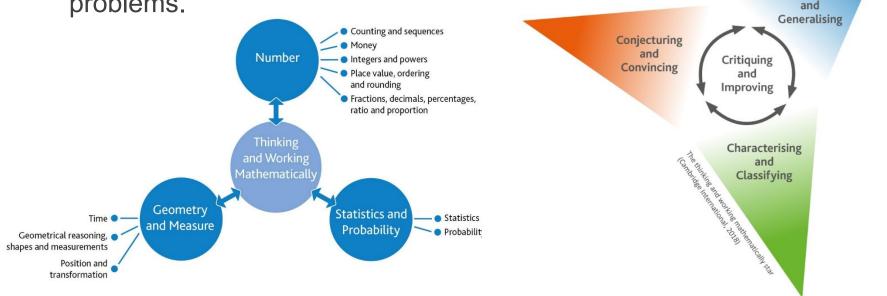
Start TeachingWhich Curriculum?Which Checkpoint?February 2022Stage 6 and Stage 9Current Checkpoint (Oct 2022)Current curriculum(0837, 0844, 0845, 0846)Stages 1 to 5, 7 and 8NEW curriculum

 February 2023
 All stages NEW curriculum
 New Checkpoint (Oct 2023)

 (0057, 0058, 0096, 0097)

September 2022 All stages NEW Curriculum New Checkpoint (May 2023) (0057, 0058, 0096, 0097)

21st century skills:


Mathematics, Science, English, Global Perspectives and Computing

Primary and Lower Secondary Maths

4 Introducing Thinking and Working Mathematically

- 21st century skills
- Helps learners consider processes when solving problems.

<u>Thinking and Working Mathematically: an exciting new feature of the</u> <u>Cambridge Primary and Lower Secondary Mathematics programme</u>

Specialising

Curriculum Framework – Progression Grid

1Nf.03 Understand that a half can act as an operator (whole number answers).	2Nf.04 Understand that fractions (half, quarter and three-quarters) can act as operators.	3Nf.05 Understand that fractions (half, quarter, three-quarters, third and tenth) can act as operators.	4Nf.03 Understand that unit fractions can act as operators.	5Nf.02 Understand that proper fractions can act as operators.	6Nf.02 Understand that proper and improper fractions can act as operators.
In examples start by using the word half and only move to the symbol $\frac{1}{2}$ when learners are secure with the concept. e.g. half of 8 is 4 In this example the fraction $\frac{1}{2}$ (half) is operating on 8. The operator, one half, decreases the original value from 8 to 4. Learners should be able to find half of any even number from 0 to 20 Fractions as operators means 'fractions of' or half of. What is one half of six?	Use examples that use diagrams e.g. Learners find $\frac{1}{4}$ of the above shape b Learners find $\frac{1}{2}$ of the above marbles. Clearners find $\frac{1}{2}$ of the above marbles. Clearners should be able to find quarter and half of numbers from 1 to 20. Do not include examples that result in a mixed or improper fraction. e.g. half of 6 = 3 quarter of 12 = 3	Find halves, thirds, quarters and tenths of numbers. In examples use the fraction notation $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{10}$ e.g. Learners find $\frac{1}{2}$ of this shape Find $\frac{3}{4}$ of these marbles Find $\frac{3}{4}$ of these marbles Fraction as operator: a unit fraction is understood to be a number that acts on another number in the sense of shrinking the magnitude of the number. e.g. Find $\frac{1}{10}$ of 100. The answer is 10. The operator, $\frac{1}{10}$, decreases the original value from 100 to 10.	e.g. Learners find $\frac{1}{5}$ of this shape	Initially use examples with numbers that are easy to calculate (tenths). Ensure learners understand that operators are multiplicative rather than additive. e.g. $\frac{3}{10}$ of 100m is 30m Ensure learners understand that to solve this example several combinations of operations could occur: - Divide100m by 10 then multiply by 3 or - Multiply 100m by 3 then divide by 10 The answer 30m is less than 100m because 100m was multiplied by a fraction less than 1 Ensure learners understand that they can multiply a quantity that represents a fraction to find the whole quantity e.g. If $\frac{1}{4}$ of a length is 36cm, then the whole length is 36 × 4 = 144cm.	e.g. ³ / ₂ of 6 is equal to 9.

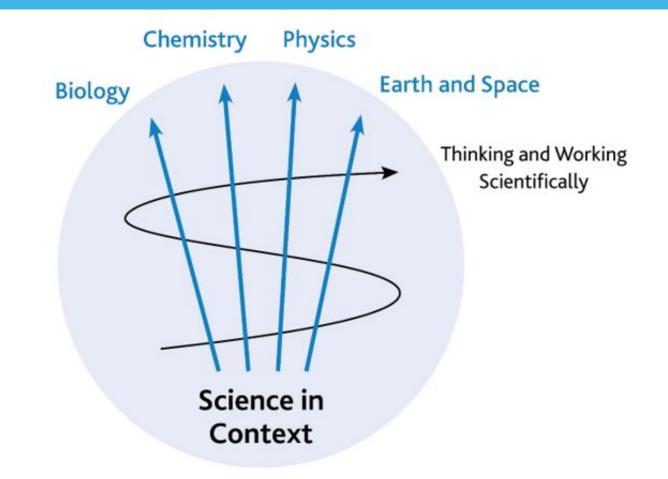
https://primary.cambridgeinternational.org/maths-0845/maths-0096

Schemes of Work

Learning objectives	Suggested teaching activities and resources	Mental strategies, possible misconception and comments
6Nc.03 Use the relationship between repeated addition of a constant and multiplication to find and use a position-to-term rule.	Write the equation $3 + 3 + 3 + 3$ on the board and ask learners what the total is. Ask learners how else we could solve this equation using multiplication (4 x 3). Establish that the first method uses repeated addition of the constant 3, while the second method is using multiplicative reasoning and that 3 is being multiplied four times. Both generate the same answer of 12.	Possible misconceptions: Learners think that the constant can change value. e.g. for the sequence 1, 3, 6, 10, 15, the differences are +2, +3, +4, +5,
	 Ask learners: If this equation (4 x 3) is the 4th term, what would be the 1st, 2nd and 3rd terms? (1 x 3), (2 x 3), (3 x 3). Do you notice a pattern? Can you predict what the 10th, 20th, 100th term would be? (10 x 3), (20 x 3), (100 x 3). What about the nth term? (n x 3 or 3n) 	
	Ask learners questions about the sequence such as: • Will one of the numbers in this sequence be 21? How do you know? • Will one of the numbers in this sequence be 0? How do you know?	
TWM.01 Specialising	In pairs, ask learners to generate other number sequences, beginning with repeated addition and then linking it to multiplication. With another pair, give them your list of numbers and ask them to find the term rule.	
Choosing an example and checking to see if it satisfies or does not satisfy specific mathematical criteria	Learners will show they are specialising (TWM.01) when they create their own number sequences from specific numbers.	
TWM.02 Generalising Recognising an underlying pattern by identifying many examples that satisfy the same mathematical	Learners will show they are generalising (TWM.02) when they notice certain properties of the sequence.	

Primary and Lower Secondary English

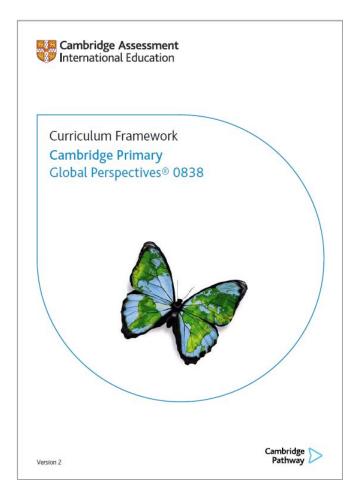
Integrating four skills:


Reading Writing Speaking and Listening

Greater emphasis on broad experience of texts

https://primary.cambridgeinternational.org/english-0844/english-0058

Primary and Lower Secondary Science



https://primary.cambridgeinternational.org/science-0846/science-0097

Cambridge Global Perspectives six skills


- 4 Analysis
- 4 Collaboration
- 4 Communication
- 4 Evaluation
- 4 Reflection
- 4 Research

https://primary.cambridgeinternational.org/global-perspectives-0838

Computing September 2021

Industry 4.0

https://primary.cambridgeinternational.org/computing-0059

https://blog.cambridgeinternational.org/programming-for-all-intro ducing-cambridge-primary-and-lower-secondary-computing/

Digital Literacy or Computing?

4 Both!

Computing

How computers work

Programming Algorithms and logic Role of emerging technology, Internet 4.0 Artificial intelligence WWW security How data is stored in a computer system

Digital Literacy

How I use computers

Personal safety and wellbeing Messaging services Benefits and risks of Artificial Intelligence WWW URLs, hyperlinks Input and output devices

Any questions?

Thank you

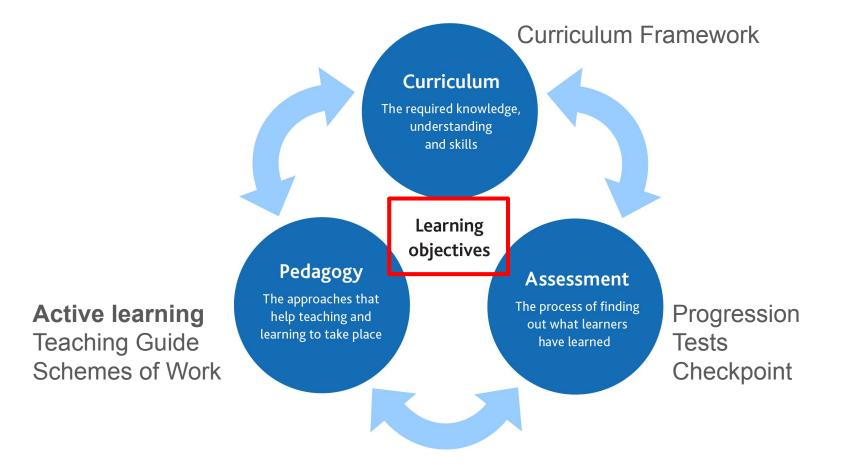
Progression to Lower Secondary

BACKWARDS - starts at IGCSE and O Level to reflect the design journey

Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6	Stage 7	Stage 8	Stage 9	IGCSE or O Level
Length	Lines Standard units	Perimeter Area Rectangle	Perimeter Area Rectangle	Perimeter Area Rectangle	Area Rectangle Triangle	Area Rectangle Triangle	Area Rectangle Triangle Parallelogram Trapekium	Area Rectangle Triangle	Carry out calculations involving the perimeter and area of a rectangle, triangle, parallelogram and trapezium
				Compound shapes		Compound shapes		Compound 2D shapes.	and compound shapes derived from these.

<u>Developing Curriculum Progression - forward, backwards,</u> <u>up, down and across</u>

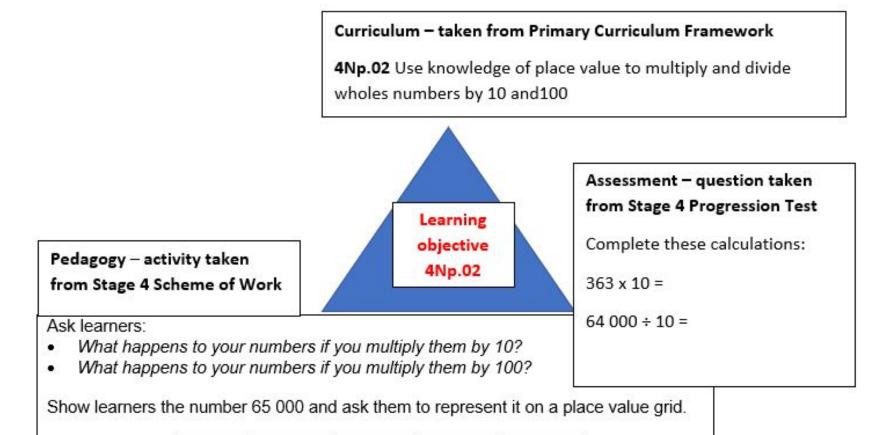
Primary and Lower Secondary Support Site



https://primary.cambridgeinternational.org/

https://lowersecondary.cambridgeinternational.org/about-cambridge-lower-secon dary

An aligned programme: coherence



https://blog.cambridgeinternational.org/describing-coh erence-of-curriculum-pedagogy-and-assessment/

Curriculum, pedagogy and assessment

10000s	1000s	100s	10s	1s
6	5 、	0 \	0 \	0
	★ 6	▶ 5	▲ 0	N 0

Then ask them to divide it by 10. They should notice that the number is now 10 times smaller. This is the inverse of multiplying 6500 by 10. Explore the effect of multiplying and dividing different numbers by 10 and 100, avoiding answers with decimal numbers.